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ABSTRACT 

Automatic differentiation (AD) is a way to accurately 
and efficiently compute derivatives of a function 
written in computer codes. We describe the proce-
dures necessary to apply the AD method to the multi-
phase, multicomponent, nonisothermal flow simula-
tor TOUGH2. In particular, we apply the AD method 
to the ECO2 module of the TOUGH2 code to explore 
a scheme for efficiently calculating the Jacobian 
matrix, which is required by the Newton-Raphson 
method for handling the nonlinearities arising at each 
iteration. The ECO2 module allows TOUGH2 to 
accurately simulate CO2 sequestration in aquifers. 
The robustness and efficiency of the AD-generated 
derivative codes are compared to the conventional 
derivative computation approach based on first-order 
finite differences (FD). Our result with the test 
problem set indicates that the AD-generated deriva-
tive code could improve the convergence behavior in 
the linear solution step, taking less computational 
time to compute one linear matrix system. 

INTRODUCTION 

Geologic formations such as oil/gas fields, deep 
saline aquifers, or coal seams provide a great oppor-
tunity for the practical development of greenhouse 
gas storage systems. Numerical simulation tools are 
used in designing and analyzing field operation cases 
of the geologic sequestration systems, capturing 
complex processes involving fluid flow and changes 
in the physical and chemical properties of the porous 
medium. The governing flow equations for these 
systems are based on mass- and energy-balance 
considerations, resulting in a set of coupled partial 
differential equations (PDEs). 
 
Since the analytical solution of the PDE system is 
very limited, various numerical approaches such as 
finite difference, finite volume, and finite element 
methods are used to obtain the solution over the 
discretized PDE domain. In these numerical 
approaches, the differential equations are reduced to 
a set of linear and nonlinear algebraic equations that 

relate all the involved primary variables at each grid-
block of the discretized domain. Thus, the efficiency 
of a numerical simulator is determined to a large 
extent by the efficiency and robustness of the solu-
tion procedures for these algebraic equations. 
Nonlinear algebraic equations can be solved by 
various implementations of Newton’s method as 
employed in the TOUGH2 code (Pruess, 1991).  
 
In TOUGH2, Newton’s method is implemented by 
seeking a sequence of solution increments xp+1 - xp for 
a given set of nonlinear algebraic equations R(x) = 0.  
Starting with an initial guess x0, the Newton iteration 
continues until a predefined convergence tolerance is 
met. The algebraic equation for Newton’s method is 
written as follows: 
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Here, ∂R/∂x is the Jacobian matrix of the partial 
derivative of the given nonlinear function R with 
respect to the independent primary variable x. The 
function R represents the residuals of the discretized 
governing equations in each gridblock. In the current 
version of TOUGH2, the first-order finite-difference 
(FD) method is used to compute an approximation of 
the required Jacobian matrix as follows: 
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As indicated in our previous study (Kim and 
Finsterle, 2002), the accuracy of the Jacobian matrix 
∂R/∂x depends on the step-size increment x∆  (see 
Equation (2)). Different step sizes could lead to a 
different convergence behavior during the Newton 
iteration. This is because a small step size could 
cause round-off errors by subtracting two almost 
equal numbers, or a large step size could result in 
truncation errors as the omitted higher-order terms in 
the FD approximation become significant. Further-
more, if highly nonlinear functions are involved, 
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these errors can lead to a breakdown of the Newton 
iteration.    
 
As an alternative to the FD method for computing 
partial derivatives, we have implemented automatic 
differentiation (AD) techniques into TOUGH2 to 
provide analytically computed Jacobian matrix 
elements. We implemented the AD approach into the 
ECO2 module of TOUGH2.  This module was devel-
oped by Pruess and Garcia (2002) for the simulation 
of CO2 injection systems in deep saline aquifers, with 
fluid properties for mixtures of water and super-
critical CO2 in the pressure and temperature range of 
75 bars < P < 400 bars and T > 35 oC.  
 
In the following sections, we briefly describe the AD 
method, after which we discuss its implementation 
into TOUGH2/ECO2. We then report on numerical 
benchmark experiments comparing AD- and FD-
based versions of the code, before we conclude with 
a brief outline of future work. 

AUTOMATIC DIFFERENTIATION (AD) 

The AD method is based on computer algebra, which 
is applied to calculate partial derivatives of a coded 
function. For example, if a function R is computed 
through the elementary functional operations of y(x) 
and z(x), the chain rule can be applied to compute the 
partial derivative of function R with respect to the 
independent variable x as follows: 
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The elementary derivatives for elementary functions 
in the equation are analytically known a priori and 
can be provided in the form of a numerical library. 
Based on this fundamental concept of computer 
algebra, various implementation techniques for AD 
processing have been developed. A detailed overview 
of the methodology and applications of AD can be 
found in Griewank and Coliss (1991).  Juedes (1991) 
provided an extensive survey of AD tools available to 
augment computer programs written in Fortran, C, or 
C++.  
 
The AD tool used in this study is the ADIFOR 
(Automatic Differentiation of Fortran, Bischof et al., 
1998), developed by Argonne National Laboratory 
and Rice University. ADIFOR allows the direct 
manipulation of a model code to generate a derivative 
code that can  compute analytical derivatives of the 
input model code, along with the original model 
outputs. The main advantage of the AD-generated 
derivative code is that all the partial derivatives are 
computed from a single run of a model code, whereas 
the FD method requires additional model runs to 
compute one partial derivative. Furthermore, the AD 

approach computes derivatives with an accuracy up 
to the arithmetic precision of the computer (Bischof 
et al., 1998), since all the involved derivative 
computations are performed analytically.  The proce-
dure for generating a derivative code with ADIFOR 
is shown in Figure 1.  
 

Subroutine sat(T,P)
Pre-declaration
………
Evaluate P(T)
………

Subroutine g_sat(T,P,dP)
Pre-declaration
ADIFOR-declaration
………
Evaluate P(T)
Evaluate derivative (dP/dT) dP(T)
………

ADIFOR Control script

 
Figure 1. Schematic diagram of an automatic differ-

entiation tool used to generate a new 
derivative code. 

IMPLEMENTATION OF TOUGH2-AD 

The governing equations of the TOUGH2 model can 
be written in a general form as follows (Pruess, 
1991): 
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This equation describes the balance of mass and 
energy for a given arbitrary domain Vn bounded by 
the surface Γn. The quantity M in the accumulation 
term of this equation represents mass (m) or internal 
energy (h) per unit volume. The total mass/heat flux 
F and source/sink q terms are written in the right-
hand side of the equation. Each mass component is 
labeled by k=1,…, NK, where NK is the number of 
components. After the surface and volume integra-
tions are applied for each term of the above equation, 
a discretized form of the equation is obtained: 
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where Mn is the average value of M over gridblock 
volume Vn, Anm is the interface area between gridblock 
n and m, and Fnm is the average value of the normal 
component of F over the surface segment Anm. After a 
first-order finite-difference scheme is applied to the 
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time-dependent term (left-hand side) of Equation (5), 
the final residual equation is derived as follows: 
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This residual equation is solved by Newton’s method. 
As described in this paper’s introduction, Newton’s 
method requires setting up a system of linear equa-
tions consisting of the Jacobian matrix and the resid-
ual vector. Here, the Jacobian matrix is the sensitivity 
(or derivative) of the residual vector with respect to 
the selected primary variables. The typical primary 
variables of the TOUGH2 code are pressure, satura-
tion, mass fraction, and temperature. 
 
In TOUGH2, two routines construct the linear equa-
tion system, which is then solved by means of either 
direct or iterative linear solvers. The thermophysical 
properties needed to assemble Equations (3) through 
(6) are calculated in the ECO2 module. Key variables 
to be computed in the ECO2 module are indicated in 
Figure 2. This module is also required to provide the 
derivatives of the thermophysical properties with 
respect to the primary variables. Currently, these 
derivatives are computed by the FD method. The 
computations needed to assemble the linear equation 
system consisting of the residual vector and the 
Jacobian matrix are performed by the FLOW module. 
The same FLOW module is used for different appli-
cations of TOUGH2 based on different equation-of-
state (EOS) modules, because the same mathematical 
form of Equation (1) can be applied to solve different 
multicomponent, multiphase flow systems, regardless 
of the nature and number of fluid phases and compo-
nents. Only a different EOS module is needed to 
obtain the appropriate thermophysical properties of 
the fluids involved. This flexibility is a unique feature 
of the TOUGH2 code—a flexibility also maintained 
when implementing the AD method into 
TOUGH2/ECO2. 
 
Many subroutines are used in the ECO2 and FLOW 
modules to perform the necessary calculations. To 
process the code with AD, the simplest approach is to 
combine all of these subroutines into one code and 
then generate one derivative code in a single AD 
processing step. However, mixing all the involved 
subroutines into one code will result in a loss of 
flexibility by breaking up the modular structure of 
TOUGH2. To avoid this, we implemented the AD 
method separately for each involved subroutine. 
After processing each subroutine with AD, we used 
the chain rule to combine derivative information from 
each routine, arriving at the final Jacobian matrix 
elements (∂R/∂xj) as follows:  
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Here, xi indicates each independent primary variable; 
the thermophysical variables computed in the ECO2 
module are denoted by yj (see Figure 2). The term 
∂yj/∂xi indicates the derivative values of the thermo-
physical variables with regard to the primary 
variables. These derivatives are computed analyti-
cally by a new ADIFOR-processed ECO2 code. The 
derivative information computed by the new ECO2 
module is combined with the derivative term of the 
residual vector ∂R/∂yj of Equation (12). This is the 
term for the sensitivity data of the residual equation 
(6) with regard to the thermophysical variables. The 
new routines required to analytically compute the 
necessary sensitivity term ∂R/∂yj are added to the 
FLOW module. A schematic diagram describing 
ADIFOR processing of the two key TOUGH2 
modules is shown in Figure 3. 
 
 

Primary variables
Pressure               P
Temperature        T
Saturation            S

Secondary variables
Phase saturation                 S
Relative permeability         kr
Viscosity                            µ
Density                               ρ
Specific enthalpy               h
Capillary pressure              Pc
Diffusion factor 1              a
Diffusion factor 2              b
Mass fraction 1                  x1

Mass fraction NK              xNK

 
Figure 2. Thermodynamic properties of the 

TOUGH2 module ECO2 for modeling 
CO2 injection into saline aquifer systems 

 

ECO2 module

FLOW module

ADIFOR 
& 

manual implementation

New ECO2 module
to compute derivatives

New ECO2 module
to compute derivatives

Linear solver
and Newton iterations

 
Figure 3. Automatic differentiation of TOUGH2 

equation-of-state and flow modules using 
ADIFOR 
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NUMERICAL EXMPERIMENTS 

A simple one-dimensional radial flow problem (see 
Figure 4) was chosen to check the correct imple-
mentation of the AD method into TOUGH2. All the 
test runs were performed in isothermal mode at T = 
45oC and initial pressure of P = 120 bars. CO2 was 
injected into the first element at a rate of 100 kg/s, 
with a constant enthalpy of 53.8 kJ/kg. Initially, the 
domain was fully saturated with water.  
 
 CO2: 100 kg/sec 

R=∞

100 m

 

Figure 4. Schematic domain of the test problem 

Table 1 shows some elements of the Jacobian matrix 
computed by both AD and FD methods at the first 
Newton iteration. The FD derivatives were computed 
using increment factors of 10-7 and 10-9. The AD-
computed derivatives match well with the FD-
computed derivatives, especially with an increment 
factor of 10-9. However, we observed that the FD 
method with the larger increment factor of 10-7 
resulted in derivatives containing serious truncation 
errors. Note that the current default increment factor 
in the TOUGH2 code is 10-7. 
 

Table 1. Jacobian matrix elements calculated with 
AD and FD derivative codes 

 
Table 2 shows the computational running time of 
each derivative code for different problem sizes. The 
AD-processed modules perform well compared to the 
FD-based modules. In both codes, the EOS module 
took up most of the computational time. Average 
improvement using the AD derivative code was on 
the order of 30%. 
 

Table 3 shows the number of iterations required to 
meet the convergence criterion for both the linear and 
nonlinear solution steps for different injection rates of 
the same test problem set. The generalized minimum 
residual solver (DSLUGM) was used with no Z-
preconditioning step in the linear solution step.  We 
set a reduced convergence criterion of 1.E-16 to 
observe the effect of the Jacobian matrix accuracy on 
the numbers of iterations in the linear solution step. 
The table shows that the convergence of the linear 
solver is strongly dependent on the method used to 
compute the Jacobian matrix.  A different step size of 
the FD method leads to a different number of 
iterations in the linear solution step, caused by the 
different accuracy of the Jacobian matrix. In most test 
cases, fewer iterations were taken by the AD code. 
With this test problem, the number of Newton 
iterations were identical for both AD- and FD-based 
codes, probably because the test problem is relatively 
easy to solve with a wide convergence radius in the 
solution search space of the Newton method.  
  

Table 2. Performance comparison of AD- and FD- 
based codes for computing one Jacobian matrix 

 
 
Table 3. Number of iterations for AD- and FD-based 

codes for linear and nonlinear solution steps 

Matrix 
element 

(i,j) 
AD FD (•= 1.E-7) FD (•= 1.E-9) 

1, 1 -2.62991E-06 -2.62944E-06 -2.62944E-06 

1, 3 9.05933E+03 8.82778E+03 9.05757E+03 

2, 1 -1.78258E-07 -1.78229E-07 -1.78229E-07 

2, 3 5.70511E+02 5.55929E+02 5.70400E+02 

3, 3 4.64261E+02 4.50487E+02 4.64158E+02 

4, 1 8.71731E-07 8.71583E-07 8.71583E-07 

4, 3 -2.84286E+03 -2.76945E+03 -2.84230E+03 

AD FD  Total 
elements EOS FLOW EOS FLOW 

AD im-
prove-
ment 

130 0.363 0.003 0.472 0.008 28.1% 

630 1.758 0.154 2.291 0.366 28.0% 

1630 4.533 0.401 5.912 0.952 28.1% 

2630 7.323 0.574 9.566 1.355 27.7% 

 Linear 
iterations 

Newton 
iterations 

Total 
CPU 
time 

AD 
improve-

ment 

Injection rate = 100 kg/sec 

AD 57 9 25.8  

FD 
∆=1.E-7 

107 9 64.6 60% 

FD 
∆=1.E-9 

53 9 32.0 19% 

Injection rate = 200 kg/sec 

AD 42 9 19.1  

FD 
∆=1.E-7 

59 9 35.7 47% 

FD 
∆=1.E-9 

66 9 39.8 52% 

Injection rate = 400 kg/sec 

AD 73 13 33.2  

FD 
∆=1.E-7 

80 13 48.3 31% 

FD 
∆=1.E-9 

100 13 60.4 45% 
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CONCLUSIONS AND FUTURE WORK 

In this paper we describe a methodology for imple-
menting automatic differentiation techniques into the 
TOUGH2/ECO2 multiphase flow simulator. Auto-
matic differentiation provides accurate analytical 
derivatives for the Jacobian matrix, which is calcu-
lated to handle numerically the nonlinear behavior 
inherent in nonisothermal, multiphase flow problems. 
In the numerical experiments, we determined that the 
automatically generated AD code provides a faster 
derivative computation, with faster convergence in 
the subsequent linear solution steps, compared to the 
traditional finite-difference method. For computation 
of one linear matrix system, the reduction in compu-
tational running time resulting from the AD deriva-
tive code was about 28%. Furthermore, the AD 
approach enhances the efficiency of the linear solu-
tion step, which resulted in total computational time 
improvement of up to 60%. 
  
In future work, we plan to measure the computational 
performance of the AD derivative code using differ-
ent problems with stronger nonlinearities. In addition, 
we will examine how the analytical derivatives relate 
to the convergence behavior of the nonlinear 
(Newton-Raphson) iterations, as well as the solution 
of the iterative linear equation solvers currently 
implemented in TOUGH2. Finally, AD techniques 
will be implemented to calculate the sensitivity 
matrix used in the various minimization algorithms of 
the iTOUGH2 inverse modeling code (Finsterle, 
1999).  
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